Home
Class 12
MATHS
Statement I If in a triangle ABC sin ^(2...

Statement I If in a triangle `ABC sin ^(2) A+sin ^(2)B+sin ^(2)C=2,` then one of the angle must be `90^(@).` Statement II In any triangles ABC `cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C`

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

Statement-1: In a triangle ABC, if sin^(2)A + sin^(2)B + sin^(2)C = 2 , then one of the angles must be 90 °. Statement-2: In any triangle ABC cos 2A + cos 2B + cos 2C = -1 - 4 cos A cos B cos C

In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

Prove that in triangle ABC,cos^(2)A+cos^(2)B-cos^(2)C=1-2sin A sin B cos C

If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C