Home
Class 12
MATHS
the value of lim(n->oo) {sqrt(n+1)+sqrt(...

the value of `lim_(n->oo) {sqrt(n+1)+sqrt(n+2)+...........+sqrt(2n-1)}/n^(3/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_(nto oo)[(sqrt(n+1)+sqrt(n+2)+...+sqrt(2)n)/(sqrt(n^(3)))]

The value of underset(n to oo)lim[(sqrt(n+1)+sqrt(n+2)+…+sqrt(2n-1))/(n^((3)/(2)))]

lim_(n rarr oo)[(sqrt(1)+2sqrt(2)+3sqrt(3)+ .......... +nsqrt(n))/(n^(5/2))]

lim_(n to infty) (sqrt(1)+sqrt(2)+ . . . +sqrt(n))/(n^(3//2))=

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]