Home
Class 11
MATHS
Locus of centroid of the triangle who...

Locus of centroid of the triangle whose vertices are (`a cos t ,a s in t` ), (`b s in t ,-b cos t` ) and (1, 0), where `t` is a parameter, is `(3x-1)^2+(3y)^2=a^2-b^2` `(3x-1)^2+(3y)^2=a^2+b^2` `(3x+1)^2+(3y)^2=a^2+b^2` `(3x+1)^2+(3y)^2=a^2-b^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Locus of centroid of the triangle whose vertices are (a cos t,a sin t),(b sin t-b cos t)and(1,0) where t is a parameter is: (3x-1)^(2)+(3y)^(2)=a^(2)-b^(2)(3x-1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)-b^(2)

Locus of centroid of the triangle whose vertices are (acost, asint), (bsint,-bcost) and (1,0) where t is a parameter is : (A) (3x+1)^2 + (3y)^2 = a^2 - b^2 (B) (3x-1)^2 + (3y)^2 = a^2 - b^2 (C) (3x-1)^2 + (3y)^2 = a^2 + b^2 (D) (3x+1)^2 + (3y)^2 = a^2 + b^2

Locus of centroid of the triangle whose vertices are (acost ,asint),(bsint,-bcost)a n d(1,0), where t is a parameter is: (3x-1)^2+(3y)^2=a^2-b^2 (3x-1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2-b^2

IF x=t^2+2t,y=t^3-3t , where t is a parameter then show that, (d^2y)/(dx^2)=3/(4(t+1)) .

The locus of a point reprersented by x=a/2((t+1)/t),y=a/2((t-1)/1) , where t in R-{0}, is (a) x^2+y^2=a^2 (b) x^2-y^2=a^2 x+y=a (d) x-y=a

If x= a sin t - b cos t, y= a cos t + b sin t , show that (d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)

The locus of a point reprersented by x=a/2((t+1)/t),y=a/2((t-1)/t) , where t in R-{0}, is (a) x^2+y^2=a^2 (b) x^2-y^2=a^2 (c) x+y=a (d) x-y=a

The locus of a point reprersented by x=a/2((t+1)/t),y=a/2((t-1)/1) , where t in R-{0}, is x^2+y^2=a^2 (b) x^2-y^2=a^2 x+y=a (d) x-y=a

If x=a sin t-b cos t,quad y=a cos t+b sin t prove that (d^(2)y)/(dx^(2))=-(x^(2)+y^(2))/(y^(3))

If x = a sin 2t(1 + cos 2t) and y = b cos 2 t(1 – cos 2 t), show that ((d y)/(d x))_(at t =pi/4)=b/a.