Home
Class 12
MATHS
mean value Theorem (f (b )-f(a ) )...

mean value Theorem `(f (b )-f(a ) )/(b-a )=f'(c )` में C का मान निकाले यदि
`f(x) = sqrt(x), a = 9,b=16`

Promotional Banner

Similar Questions

Explore conceptually related problems

If, from mean value theorem , f(x_1)=(f(b)-f(a))/(b-a), then:

Lagrange's mean value theorem is , f(b)-f(a)=(b-a)f'(c ), a lt c lt b if f(x)=sqrt(x) and a=4, b=9, find c.

In the mean value theorem, f(b) - f(a) = (b-a) f(c ) , if a= 4, b = 9 and f(x) = sqrt(x) then the value of c is

In the mean value theorem f(b)-f(a)=(b-a)f'(c )(a lt c lt b) , if a=4, b=9 and f(x)=sqrt(x) , then the value of c is -

If, from mean value theorem , f'(x_(1))=(f(b)-f(a))/(b-a), then:

Using Largrange's mean value theorem f(b)-f(a)=(b-a)f'(c ) find the value of c, given f(x)=x(x-1)(x-2), a=0 and b=(1)/(2) .

In the Mean Value theorem (f(b)-f(a))/(b-a)=f'(c) if a=0 , b =1/2 and f(x)=x(x-1)(x-2) the value of c is

In the Mean value theorem f(b)-f(a)=(b-a)f'(c), if a=4, b=9 and f(x)= sqrtx , then the value of c is

In the Mean value theorem f(b)-f(a)=(b-a)f'(c), if a=4, b=9 and f(x)= sqrtx , then the value of c is