Home
Class 12
MATHS
e^(y)+xy=e, then orderd pair ((dy)/(dx),...

`e^(y)+xy=e`, then orderd pair `((dy)/(dx),(d^(2)y)/(dx^(2)))` at `y=1`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y) +xy = e , the ordered pair ((dy)/(dx),(d^(2)y)/(dx^(2))) at x = 0 is equal to

If xy=e^((x-y)), then find (dy)/(dx)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)+xy=e^(2) then the value of (d^(2)y)/(dx^(2)) at x=0 is -

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

If e^(y)(x+1)=1 . Show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If y=e^(ax)sinbx, then (d^(2)y)/(dx^(2))-2a(dy)/(dx)+a^(2)y=