Home
Class 12
MATHS
The range of the function f(x)=sin^(-1)[...

The range of the function `f(x)=sin^(-1)[x^(2)+1/2]+cos^(-1)[x^(2)-1/2` where [ ] is the greatest integer function is:

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

f(x)=sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] where [.1 denotes the greatest integer function.

The range of sin^(-1)[x^(2)+1/2] + cos^(-1)[x^(2)- 1/2] , where [.] denotes the greatest integer function, is

Find the range of the following function f(x)=sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , [.] denotes the Greatest integer function.

The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] is (where, [.] denotes the greatest integer function)

The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] is (where, [.] denotes the greatest integer function)

The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/9]+cos^(-1) [x^(2)-4/9] where where [.] denotes the greatest integer function is:

The number of elements in the range of functions: y=sin^(-1) [x^(2)+5/9]+cos^(-1) [x^(2)-4/9] where where [.] denotes the greatest integer function is:

The range of the function f(x)=(sin(pi[x^(2)+1]))/(x^(4)+1), where [.] denotes the greatest integer function,is