Home
Class 11
MATHS
If Sn=(1.2)/(3!) +(2.2^2)/(4!) +(3.2^3)/...

If `S_n=(1.2)/(3!) +(2.2^2)/(4!) +(3.2^3)/(5!)+...` upto n terms then the sum infinite terms is

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

2+ 3.2 + 4.2^(2) + …... upto n terms =

1^(2) + 3^(2) + 5^(2) + …. upto n terms =

If S_(n)=3+(1+3+3^(2))/(3!)+(1+3+3^(2)+3^(3))/(4!) ………… upto n -terms Then the value of [lim_(ntooo)S_(n)] is (where [.] represent G.I.F)

(1)/(2)+(3)/(4)+(5)/(8) The sum of the series infinite terms is

The sum of 1+(2)/(5)+(3)/(5^(2))+(4)/(5^(3))+.... upto n terms