Home
Class 12
MATHS
Let f(x)=(x+1)^2-1, xgeq-1. Then the set...

Let `f(x)=(x+1)^2-1, xgeq-1.` Then the set `{x :f(x)=f^(-1)(x)}` is `{0,1,(-3+isqrt(3))/2,(-3-isqrt(3))/2}` (b) `{0,1,-1` `{0,1,1}` (d) `e m p t y`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is (a) {0,1,(-3+isqrt(3))/2,(-3-isqrt(3))/2} (b) {0,-1} (c) {0,1} (d) e m p t y

Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is (a) {0,1,(-3+isqrt(3))/2,(-3-isqrt(3))/2} (b) {0,-1} (c) {0,1} (d) e m p t y

Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is (a) {0,1,(-3+isqrt(3))/2,(-3-isqrt(3))/2} (b) {0,-1} (c) {0,1} (d) e m p t y

Let f(x)=(x+1)^(2)-1,x>=-1. Then the set {x:f(x)=f^(-1)(x)} is (a){0,1,(-3+i sqrt(3))/(2),(-3-i sqrt(3))/(2)}(b){0,-1}(c){0,1}(d) empty

If f(x)=(1+x)(1+x^2)(1+x^3)(1+x^4) , then f'(0)=1

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

Let f(x)={[((e^(3x)-1))/(x),,x!=0],[3,,x=0]} then 2f'(0) is

Let f(x) = x^3 + x^2 + 100x + 7 sin x, then equation 1/( y - f(1)) + 2/(y - f(2)) + 3/(y - f(3)) = 0 has

If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-isqrt(3))/(2i)]] , i = sqrt(-1) and f (x) = x^(2) + 2, then f(A) equals to