Home
Class 12
MATHS
Let r,s and t be the roots of the equati...

Let `r,s` and `t` be the roots of the equation `8x^(3)+1001x+2008=0` and if `99lamda=(r+s)^(3)+(s+t)^(3)+(t+r)^(3)`, the value of `[lamda]` is (where [.] denotes the greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let r,s and t be the roots of the equation 8x^(3)+1001x+2008=0 . If 99lamda=(r+s)^(3)+(s+t)^(3)+(t+r)^(3) , the value of [lamda] (where [.] denotes the greatest integer function) is ____

Let r,s and t be the roots of the equation 8x^(3)+1001x+2008=0 . If 99lamda=(r+s)^(3)+(s+t)^(3)+(t+r)^(3) , the value of [lamda] (where [.] denotes the greatest integer function) is ____

Let r,s and t be the roots of the equation 8x^(3)+1001x+2008=0 . If 99lamda=(r+s)^(3)+(s+t)^(3)+(t+r)^(3) , the value of [lamda] (where [.] denotes the greatest integer function) is ____

Let r,s and t be the roots of the equation, 8x^(3)+1001x+2008=0. The value of (r+s)^(3)+(s+t)^(3)+(t+r)^(3)is

Let r,s, andt be the roots of equation 8x^(3)+1001x+2008=0. Then find the value of (r+s)^(3)+(s+t)^(3)+(t+r)^(3)

Solve in R: x^2+ 2[x] = 3x where [.] denotes greatest integer function.

Let r ,s and t be the roots of equation 8x^3+1001 x+2008=0. Then find the value of (r+s)^3 +(s+t)^3+(t+r)^3 .

Let r ,s and t be the roots of equation 8x^3+1001 x+2008=0. Then find the value of (r + s)^3 + (s + t)^3 + (t + r)^3 is .

Let r ,s ,and t be the roots of equation 8x^3+1001 x+2008=0. Then find the value of (r+s)^3 + (s+t)^3 + (t+r)^3 is .

Let r ,s ,a n dt be the roots of equation 8x^3+1001 x+2008=0. Then find the value of (r+s)^3 +(s+t)^3+(t+r)^3 .