Home
Class 12
MATHS
If f:[0,pi/2)->R is defined as f(theta)...

If `f:[0,pi/2)->R` is defined as `f(theta)=|(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1)|` Then, the range of `f` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):}| then the set {f(theta):0lt=thetalt(pi)/(2)} is

If f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):}| then the set {f(theta):0lt=thetalt(pi)/(2)} is

If f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):}| then the set {f(theta):0lt=thetalt(pi)/(2)} is

If f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):}| then the set {f(theta):0lt=thetalt(pi)/(2)} is

(tantheta+2)(2 tantheta+1)= ?

(1-tantheta)(1+sin 2theta) = (1+tantheta)

costheta(tantheta+2)(2tantheta+1)=?

(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta) is equal to -

(sectheta+tantheta-1)(sectheta-tantheta+1)=