Home
Class 12
MATHS
[" Temable function satisfying "f(x)=f(y...

[" Temable function satisfying "f(x)=f(y)f(x-y)AA x,y in R=mf(0)=int_(0)^(4){2x}dx," where "],[[" tas equal to "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R rarr R be a differentiable function satisfying f(x) = f(y) f(x - y), AA x, y in R and f'(0) = int_(0)^(4) {2x}dx , where {.} denotes the fractional part function and f'(-3) - alpha e^(beta) . Then, |alpha + beta| is equal to.......

Let f : R rarr R be a differentiable function satisfying f(x) = f(y) f(x - y), AA x, y in R and f'(0) = int_(0)^(4) {2x}dx , where {.} denotes the fractional part function and f'(-3) = alpha e^(beta) . Then, |alpha + beta| is equal to.......

Determine the function satisfying f^(2)(x+y)=f^(2)(x)+f^(2)(y)AA x,y in R

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to