Home
Class 11
MATHS
Solution of (2+sqrt3)^(x^2-2x+1) +(2-sq...

Solution of `(2+sqrt3)^(x^2-2x+1) +(2-sqrt3)^(x^2-2x-1)=4/(2-sqrt3)` are (A) `1+-sqrt3,1` (B) `1+-sqrt2,1` (C) `1+-sqrt3,2` (D) `1+-sqrt2,2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (2+sqrt3)^(x^2-2x+1)+ (2-sqrt3)^(x^2-2x-1)=2/(2-sqrt3) .

Solution of (2+sqrt(3))^(x^(2)-2x+1)+(2-sqrt(3))^(x^(2)-2x-1)=(4)/(2-sqrt(3))are(A)1+-sqrt(3),1(B)1+-sqrt(2),1(C)1+-sqrt(3),2(D)1+-sqrt(2),2

If (2+sqrt(3))^(x^(2)-1)+(2-sqrt(3))^(x^(2)-1)=4 then x= ?

Solve (sqrt3+1)^(2_x)+(sqrt3-1)^(2_x)=2^(3x) .

sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1))>(3)/(2)

Simplify : 1/(sqrt2+sqrt3)-(sqrt3+1)/(2+sqrt3)+(sqrt2+1)/(3+2sqrt2)

Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=2^(3x) is