Home
Class 12
MATHS
Let f(x)=[x] +sqrt({x}), where [.] deno...

Let `f(x)=[x] +sqrt({x})`, where [.] denotes the integral part of x and {x} denotes the fractional part of x. Then `f^(-1)(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=[x]+sqrt({x}), where [.] denotes the greatest Integer function and {.} denotes the fractional part function respectively,is discontinuous at

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

Discuss the minima of f(x)={x}, where {,} denotes the fractional part of x

If f(x)={x^2}-({x})^2, where (x) denotes the fractional part of x, then

The function f( x ) = [x] + sqrt{{ x}} , where [.] denotes the greatest Integer function and {.} denotes the fractional part function respectively, is discontinuous at

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

The domain of f(x)=sqrt(x-2{x}). (where {} denotes fractional part of x ) is