Home
Class 12
PHYSICS
Two block M(1) and M(2) rest upon each o...

Two block` M_(1)` and `M_(2)` rest upon each other on an inclined plane Coefficient of friction between surfaces are shown if the angle 0 is slowly increased and `M_(1) le M_(2)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Two blocks M_(1) and M_(2) rest upon each other on an inclined plane. Coefficient of friction between surfaces are shown. If the angle ’theta ' is slowly increased and M lt M_(1) then

A block of mass m rests on a rough inclined plane. The coefficient of friction between the surface and the block is µ. At what angle of inclination theta of the plane to the horizontal will the block just start to slide down the plane?

A block of mass m rests on a rough inclined plane. The coefficient of friction between the surface and the block is µ. At what angle of inclination theta of the plane to the horizontal will the block just start to slide down the plane?

Two blocks of masses m_(1) and m_(2) are kept touching each other on a rough fixed inclined plane of inclination alpha . Coefficients of kinetic friction between the inclined plane and the block m_(1) is k_(1) and between the inclined plane and block m_(2) is k_(2) . Find the force of interaction between the blocks in the process of motion.

Two blocks of masses m_(1) and m_(2) are placed in contact with each other on a horizontal platform. The coefficient of friction between the platform and the two blocks is the same. The platform moves with an acceleration. The force of interaction between the blocks is :

The coefficient of friction between m_(2) and inclined plane is mu (shown in the figure). If (m_(1))/(m_(2))=sin theta then

The coefficient of friction between m_(2) and inclined plane is mu (shown in the figure). If (m_(1))/(m_(2))=sin theta then

A block of mass M rests on an inclined plane. If the coefficient of friction between the block and the plane is mu , then the block will slide down the plane under its own weight when the angle of inclination is