Home
Class 12
MATHS
Let f:(-1,1)rarrB be a function defined...

Let `f:(-1,1)rarrB` be a function defined by `f(x)=tan^(-1)[(2x)/(1-x^2)]` . Then `f` is both one-one and onto when `B` is the interval. (a)`[0,pi/2)` (b) `(0,pi/2)` (c)`(-pi/2,pi/2)` (d) `[-pi/2,pi/2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(-1,1)rarr B be a function defined by f(x)=tan^(-1)[(2x)/(1-x^(2))]. Then f is both one- one and onto when B is the interval.(a) [0,(pi)/(2))(b)(0,(pi)/(2))(c)(-(pi)/(2),(pi)/(2))(d)[-(pi)/(2),(pi)/(2)]

Let f:R rarr [0, (pi)/(2)) be a function defined by f(x)=tan^(-1)(x^(2)+x+a) . If f is onto, then a is equal to

Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( x^(2) + x + a. Then set of value of a for which f(x) is onto is

One of the root equation cosx-x+1/2=0 lies in the interval (a) (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

One of the root equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

The functions f:[-1//2, 1//2] to [-pi//2, pi//2] defined by f(x)=sin^(-1)(3x-4x^(3)) is

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . The above function can be classified as :

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . The above function can be classified as :

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?