Home
Class 11
MATHS
Let f(x)=sqrt([sin 2x] -[cos 2x]) (where...

Let `f(x)=sqrt([sin 2x] -[cos 2x])` (where I I denotes the greatest integer function) then the range of f(x) will be

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the range of f(x) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

Let f(x)=cos ec^(-1)[1+sin^(2)x], where [*] denotes the greatest integer function,then the range of f

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

If f : R to [-1, 1] , where f(x)=sin(pi/2[x]) (where [.] denotes the greatest integer function), then the range of f(x) is