Home
Class 11
MATHS
If f(x)/g(x)=h(x) where g(x)=sqrt(1-|x^2...

If `f(x)/g(x)=h(x)` where `g(x)=sqrt(1-|x^2/(x-1)|` and `h(x)=1/sqrt(|x-1|-[x]` then the domain of f(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

If f(x)=sqrt(2-x) and g(x)=sqrt(1-2x) ,then the domain of f[g(x)] is:

If f(x)=sqrt(|3^(x)-3^(1)|-2) and g(x)=tan pi x, then domain of fog(x) , is

If f(x)=1+1//x, g(x)=sqrt(1-x^(2)) , then the domain of f(x)-g(x) is

If f(x) = (3)/(x-2) and g(x) = sqrt(x + 1) , find the domain of f @ g .

If f(x) is continuous and increasing functin such that the domain of g(x) = sqrt(f(x)-x) be R and h(x) =(1)/(1-x) then the domain of phi(x)=sqrt(f(f(f(x)))-h(h(h(x)))) is -

If g(x) =1+sqrt(x) and f(g(x)) =3+2sqrt(x)+x , then f(x)=

Suppose that g(x)=1+sqrt(x) and f(g(x))=3+2sqrt(x)+x, then f(x) is