Home
Class 11
MATHS
The domain of f(x) = log(1/2) log4 log3 ...

The domain of `f(x) = log_(1/2) log_4 log_3 [x-lambda]^2` (where [ ] denotes the greatest integer function) is `(-oo,2]uu[6,oo)` then the value of `lambda` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function sqrt(log_(1/3) log_4 ([x]^2 - 5 )) is (where [x] denotes greatest integer function)

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

The domain of the function f(x)=log_([x+(1)/(2)])|x^(2)-x-6|* where [] denotes the greatest integer function,is

lim_(x rarr oo) (log x)/([x]) , where [.] denotes the greatest integer function, is

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The domain of the function sqrt(log_((1)/(3))log_(4)([x]^(2)-5)) is (where [x] denotes greatest integer function)

Find the domain and range of f(x)=log[cos|x|+(1)/(2)], where [.] denotes the greatest integer function.

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.