Home
Class 12
MATHS
If y^x=e^(y-x) , prove that (dy)/(dx)=(1...

If `y^x=e^(y-x)` , prove that `(dy)/(dx)=(1+logy)^2/logy`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If e^y=y^x , prove that (dy)/(dx)=((logy)^2)/(logy-1)

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx-1)

x(dy)/(dx)=y(logy-logx+1)