Home
Class 11
MATHS
The nth term of the coresponding series ...

The nth term of the coresponding series of `int_0^1 tan^-1 x dx` is (A) `pi/(4n)` (B) `(1/n)tan^(-1)(n-1)` (C) `pi/(2n)` (D) `tan^(-1)(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((n)/(n+1))-tan^(-1)(2n+1)=(3 pi)/(4)

tan^(-1)((3)/(n))+tan^(-1)((4)/(n))=(pi)/(2)

tan^(-1)((n-5)/(n-6))+tan^(-1)((n+5)/(n+6))=(pi)/(4)

tan {n (pi) / (2) + (- 1) ^ (n) (pi) / (4)} = 1

tan^(-1)((a+x)/a)+tan^(-1)((a-n)/a)=(pi)/(6)

x + y = (4n + 3) (pi) / (4), n in Z rArr ((1 + tan x) (1 + tan y)) / (tan x tan y) =

If I_n=int_0^(pi/4) tan^n x dx , ( n > 1 and is an integer), then

underset(n to oo)lim 1/n [ tan pi/(4n) + tan (2pi)/(4n) + tan (3pi)/(4n) + …. + tan(npi)/(4n)] =

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=[pi/4; m^(2)/n^(2) > -1