Home
Class 11
MATHS
[" 12."sin^(2)160^(@)+sin^(2)140^(@)+sin...

[" 12."sin^(2)160^(@)+sin^(2)140^(@)+sin^(2)100^(@)=],[" 1) "(1)/(2)quad " 2) "(3)/(2)quad " 3) "(5)/(2)quad 4" ) "(7)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(2) 20^(@) + sin^(2) 100^@ + sin^(2) 140^(@) =

cos^(6)A+sin^(6)A=1-3/4sin^(2)(2A)

cos^(6)A+sin^(6)A=1-3/4sin^(2)(2A)

(sin^(2)1^(@) + sin^(2)3^(@) + sin^(2)5^(@) +sin^(2)7^(@) + ….. + sin^(2)87^(@) + sin^(2)89^(@)) equals

Solve sin^(2)x+(1)/(4)sin^(2)3x=sin x sin^(2)3x

Show that sin^(2) 12^(@)+ sin ^(2)21^(@)+ sin ^(2)39^(@)+ sin^(2)48^(@)=1+ sin^(2)9^(@)+ sin^(2)18^(@)

2sin ^(-1)""(3)/(5) +sin ^(-1) ""(7)/(25)=(pi)/(2)

Prove that the value of each the following determinants is zero: sin^(2)(x+(3 pi)/(2))quad sin^(2)(x+(5 pi)/(2))quad sin^(2)(x+(7 pi)/(2))sin(x+(3 pi)/(2))quad sin(x+(5 pi)/(2))quad sin(x+(7 pi)/(2))sin(x-(3 pi)/(2))quad sin(x-(5 pi)/(2))quad sin(x-(7 pi)/(2))

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is