Home
Class 11
MATHS
Let f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0...

Let `f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0,x in RR,` then `f` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={(x^2|cos"pi/x|, x ne0),(0, x=0):} , x in R , then f is

f(x)={x^(2)|(cos pi)/(x)|,x!=0,x in R,x=0 then f is

Let f(x)={(x^2|cos"pi/x|,xne0),(0,x=0):}

(B) Let f(x)={:{(x^(2)|"cos"pi/x|","x!=0),(" 0 ,"x=0):}x inR , then f is :

If f(x)+2f(1/x)=3x,x ne0 and S={x in RR:f(x)=f(-x)}, then S

Let a fiunction f defined by f(x)=(x-|x|)/(x) "for" x ne0 and f(0) =2 then f is

Let f(x) = {(x "sin" (pi)/(x)",",0 lt x le 1),(0,x =0):} . Then f'(x) = 0 for