Home
Class 12
MATHS
If n is a natural number and we define a...

If n is a natural number and we define a polynomial `p_a(x)` of degree n such that `cosntheta=p_n (cos theta)`, then The value of `p_(n+1)(x)+p_(n-1)(x)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If n be a natural number define polynomial f_(n)(x) of n^(th) degree as follows f_(n)(costheta)cosntheta i.e. f_(2)(x)=2x^(2)-1 f_(3)(x)=4x^(3)-3x_(1) Then f_(6)(x) is equal to

If p_n =cos^n theta+sin ^ntheta then the value of 2P_6-3P_4+1 will be

Let P(x) be a polynomial of degree n with real coefficients and is non negative for all real x then P(x) + P^(1)(x)+ ...+P^(n)(x) is

If P_n = cos^n theta+ sin^n theta then 2P_6-3P_4 + 1 =

If P_n = cos^n theta+ sin^n theta then 2P_6-3P_4 + 1 =

If p_(n)=cos^(n)theta+sin^(n)theta then p_(n)-p_(n-2)=kp_(n-4) where k

If P_(n) = cos^(n) theta + sin^(n) theta Maximum value of P_(1000) will be

If P_(n) = cos^(n) theta + sin^(n) theta Maximum value of P_(1000) will be