Home
Class 11
MATHS
tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) wher...

`tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x))` where `x!=0,` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

The differential coefficient of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x is equal to..........

The differential coefficient of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x is equal to..........

Differentiate the functions with respect to x : tan^(-1){(sqrt(1+a^2x^2)-1)/(a x)},x!=0

tan^(-1)(1-x^(2)-(1)/(x^(2)))+sin^(-1)(x^(2)+(1)/(x^(2))-1) where x!=0) is equal to

If tan^(-1)(sqrt(1+x^(2))-1)/x=4^(0) , then

2tan(tan^(-1)(x)+tan^(-1)(x^(3))), where x in R-{-1,1} is equal to (2x)/(1-x^(2))t(2tan^(-1)x)tan(cot^(-1)(-x)-cot^(-1)(x))tan(2cot^(-1)x)

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)) ,where x in R-{-1,1}, is equal to