Home
Class 7
MATHS
The area of a circle of circumference C ...

The area of a circle of circumference `C` is (a)`(C^2)/(4pi)` (b) `(C^2)/(2pi)` (c)`(C^2)/pi` (d) `(4C^2)/pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

The area of a circle of circumference C is (C^(2))/(4 pi) (b) (C^(2))/(2 pi)(C^(2))/(pi) (d) (4C^(2))/(pi)

In Fig. 15.108, the area of the segment P A Q is (FIGURE) (a) (a^2)/4(pi+2) (b) (a^2)/4(pi-2) (c) (a^2)/4(pi-1) (d) (a^2)/4(pi+1)

In Fig. 15.108, the area of the segment P A Q is (FIGURE) (a) (a^2)/4(pi+2) (b) (a^2)/4(pi-2) (c) (a^2)/4(pi-1) (d) (a^2)/4(pi+1)

The area of a circle is 9pi\ c m^2dot Its circumference is (a) 6pi\ c m (b) 36pi\ c m (c) 9pi\ c m (d) 36pi^2\ c m

The ratio of the perimeter (circumference) and diameter of a circle is (a) pi\ (b) 2pi (c) pi/2 (d) pi/4

If A is the area and C is the circumference of a circle, then its radius is (a) A/C (b) (2A)/C (c) (3A)/C (d) (4A)/C

If the circumference and the area of a circle are numerically equal, then diameter of the circle is (a) pi/2 (b) 2pi (c) 2 (d) 4

If the circumference and the area of a circle are numerically equal, then diameter of the circle is (a) pi/2 (b) 2pi (c) 2 (d) 4

If the circumference and the area of a circle are numerically equal,then the diameter is equal to (pi)/(2) (b) 2backslash pi( c) 2 (d) 4

The area of a circle whose area and circumference are numerically equal, is (a) 2pi sq. units (b) 4pi sq. units (c) 6pi sq. units (d) 8pi sq. units