Home
Class 12
MATHS
Let y=((3^x-1)/(3^x+1))sinx+loge(1+x), x...

Let `y=((3^x-1)/(3^x+1))sinx+log_e(1+x), x >-1` then at x=0 , `dy/dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let y=((3^(x)-1)/(3^(x)+1))sin x+log_(e)(1+x),x>1 then at x=0,(dy)/(dx)=

Let y=((3^(x)-1)/(3^(x)+1)) sinx+log_(e)(1+x), x gt -1 then at x=0, (dy)/(dx) equals

Let y=((3^x-1)/(3^x+1))sinx+log_e(2+x),xgt-1 . Then at x=0 dy/dx equals

Let y=((3^(x)-1)/(3^(x)+1))sinx+log_(e)(1+x),x gt-1 , then at x = 0, (dy)/(dx) equals-

If y=log(1/x) , show that dy/dx+e^y=0

If y=5^(2{log_(5)(x+1)-log_(5)(3x+1)}) then (dy)/(dx) at x=0 is

If y = (x-1)log(x-1)-(x+1)log(x+1) , prove that : dy/dx = log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that : dy/dx = log((x-1)/(1+x))

1.If y = (log x)3 then dy/dx=