Home
Class 11
MATHS
Find the minimum value of f(x)=(x^2sin^2...

Find the minimum value of `f(x)=(x^2sin^2x+4)/(xsinx),` where `x in (0,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the (absolute) maximum and minimum values of f(x) = -4sin x + 2x in (0,pi/2)

The minimum value of the expression (9x^(2)sin^(2)x+4)/(x sin x) for x in(0,pi) is

The minimum value of the function f(x)=3tanx+4cotx where x in(0,pi/2)

Find the maximum and minimum values of f(x)=x+sin2x in the interval [0,2 pi]

Find the maximum and the minimum values of f(x)=sin3x+4,\ \ x in (-pi//2,\ pi//2) , if any.

Find the maximum and minimum value of f(x)=sin x+(1)/(2)cos2x in [0,(pi)/(2)]

Find the maximum and minimum values of f(x)=sin x+(1)/(2)cos2x in [0,pi/2]

Find the maximum and minimum values of f(x)=x+sin2x in the interval [0,\ 2pi]

Find local maximum and minimum value of f(x)=sin^(4)x + cos^(4)x, x in[0, (pi)/(2)] .

Find the maximum and the minimum values of f(x)=sin3x+4,quad x in(-pi/2,pi/2), if any.