Home
Class 12
MATHS
If |z1-1|<1, |z2-2|<2,|z3-3|<3 then |z1+...

If `|z_1-1|<1`, `|z_2-2|<2`,`|z_3-3|<3` then `|z_1+z_2+z_3|`

Text Solution

Verified by Experts

`|z-1|<1`
center(1,0) and` r_1=1`
`|z_2-2|<2`
`C_2(2,0) and r_2=2`
`|z_3-3|<3`
`c_3(3,0) and r_3=3`
`|Z_1| in(0,2)`
`|Z_2| in (0,4)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_(1)|!=1,|(z_(1)-z_(2))/(1-bar(z)_(1)z_(2))|=1, then

If |z_(1)|=1(z_(1) ne -1) and z_(2)=(z_(1)-1)/(z_(1)+1) then show that the real part of z_(2) is zero.

If |z_(1)|=1,|z_(2)|=1,|(1)/(z_(1))+(1)/(z_(2))|=(3)/(2) then find the value of 2|z_(1)+z_(2)|]|=(3)/(2) then

If |z_(1)|=|z_(2)|=...............=|z_(n)|=1 then |(1)/(z_(1))+(1)/(z_(2))+.........+(1)/(z_(n))|

If |z_1|=|z_2|=|z_3|=|(1)/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| = ...... .

If |z_(1)| = |z_(2)| = 1, z_(1)z_(2) ne -1 and z = (z_(1) + z_(2))/(1+z_(1)z_(2)) then

If |z_1|=1a n d|z_2|=2,t h e n Max (|2z_1-1+z_2|)=4 Min (|z_1-z_2|)=1 |z_2+1/(z_1)|lt=3 Min (|z_1=z_2|)=2

If |z_1|=|z_2|=.......=|z_n|=1, prove that |z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)