Home
Class 10
MATHS
lambda के किन मानों के लिए, द्विघात समीक...

`lambda` के किन मानों के लिए, द्विघात समीकरण `x^(2)+lambdax + (lambda+1.25)=0` के मूल:
(i) सम्पाती हैं?
(ii) वास्तविक और आसमान हैं?
(iii) वास्तविक नहीं हैं?

लिखित उत्तर

Verified by Experts

यहाँ
`x^(2)+lambdax+(lambda+1.25)=0`
`ax^(2) + bx+c=0` से तुलना करने पर
a=1, `b=lambda, c=lambda+1.25`
`D=b^(2)-4ac = lambda^(2)-4(1)(lambda + 1.25)`
`rArr D=lambda^(2) - 4lambda -5 =(lambda-5) (lambda+1)`
(i) सम्पाती मूलों के लिए
D=0
`rArr (lambda-5)(lambda+1)=0`
`therefore lambda=5` या `lambda=-1`
(ii) वास्तविक और आसमान मूलों के लिए
`D gt 0`
`rArr (lambda-5)(lambda+1) gt 0`
अब दो सिथतियाँ सम्भव हैं:
सिथति I: `lambda-5 gt 0` और `lambda+1 gt 0`
`rArr lambda gt 5`
सिथति II : `lambda-5 lt 0` और `lambda+1 lt 0`
`lambda lt 5` or `lambda lt -1`
`rArr lambda lt -1`
समीकरण (1) या (2) से
`lambda gt 5` या `lambda lt -1`
(iii) कोई वास्तविक मूल न होने के लिए
`D lt 0`
`rArr (lambda-5)(lambda+1) lt 0`
अब दो सिथतियाँ सम्भव हैं।
सिथति I: `lambda-5 gt 0` और `lambda+1 lt 0` `[therefore (+)(-)=-]`
`rArrr lambda gt 5` और `lambda lt -1`
जो सम्भव नहीं हैं।
सिथति II: `lambda-5 lt 0` और `lambda+1 gt 0`
`rArr lambda lt 5` और `lambda gt -1`
`rArr -1 lt lambda lt 5` अर्थात `lambda, -1 `और 5 के बीच में स्तिथ हैं।
Promotional Banner

टॉपर्स ने हल किए ये सवाल

  • द्विघात समीकरण

    NOOTAN HINDI|Exercise प्रश्नावली 4A|37 Videos
  • द्विघात समीकरण

    NOOTAN HINDI|Exercise प्रश्नावली 4B|16 Videos
  • दो चर वाले रैखिक समीकरण युग्म

    NOOTAN HINDI|Exercise विविध प्रश्नावली (बहुविकल्पीय प्रश्न)|7 Videos
  • निर्देशांक ज्यामिति

    NOOTAN HINDI|Exercise बहुविकल्पीय प्रश्न|7 Videos