Home
Class 12
MATHS
If In=int cot^n dc and I0+I1+2(I2+.........

If `I_n=int cot^n dc and I_0+I_1+2(I_2+.......+I_8)+I_9+I_10=A(u+(u^2)/2+........+(u^9)/9)+` constant where `u=cot x` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n) = int Cot^(n) xdx then I_(4) + I_(6) =

If I_(n)= int cot^(n)x dx" then " I_(0)+I_(1)+2(I_(2)+I_(3))+I_(4)+I_(5)=

If I_(n)=int cot^(n) x dx , then I_(0)+I_(1)+2(I_(2)+I_(3)+...+I_(8))+I_(9)+I_(10) equals to (where u=cot x )

If I_(n)=int cot^(n) x dx , then I_(0)+I_(1)+2(I_(2)+I_(3)+...+I_(8))+I_(9)+I_(10) equals to (where u=cot x )

If I_(n)=int tan^(n)xdx then I_(0)+I_(1)+2(I_(2)+......+I_(8))+I_(9)+I_(10)= (a) (tan x)/(1)+(tan^(2)x)/(2)+....+(tan^(9)x)/(9), (b) -((tan x)/(1)+(tan^(2)x)/(2)+......+(tan^(9)x)/(9)) (c) (cot x)/(1)+(cot^(2)x)/(2)+......+(cot^(9)x)/(9) (d) -((cot x)/(1)+(cot^(2)x)/(2)+......+(cot^(9)x)/(9))

Method of integration by parts : If I_(n)=int cot^(n)x dx then I_(0)+I_(1)+2(I_(2)+I_(3)+,......+I_(8))+I_(9(+I_(10)=....

If I_(n)=int_(0)^((pi)/(4))sec^(n)dx then I_(10)-(8)/(9)I_(8)=

If I_(n) = int_((pi)/(4))^((pi)/(2)) cot^(n) x dx , prove that I_(n) + I_(n-2) = (1)/(n-1)

Mention the chief function of I.U.C.N.