Home
Class 9
MATHS
[3sqrt(x^4y)xx1/(3sqrt(x y^7))]^-4...

`[3sqrt(x^4y)xx1/(3sqrt(x y^7))]^-4`

Promotional Banner

Similar Questions

Explore conceptually related problems

[3sqrt(x^(4)y)xx(1)/(3sqrt(xy^(7)))]^(-4)

find x and y 3/sqrt(x)+1/sqrt(x)=sqrt(x) y^2-(7)^(5/2)/sqrt(y)=0

The value of f(x,y)=((4sqrt(x^(3)y)-4sqrt(x^(3)))/(sqrt(y)-sqrt(x))+(1+sqrt(xy))/(4sqrt(xy)))^(-2)(1+2sqrt((y)/(x))+(y)/(x))^((1)/(2)) when x=9,y=0.04

Expand (x+y)^(4)-(x-y)^(4) . Hence find the value of (3+sqrt(5))^(4) -(3-sqrt(5))^(4) .

Expand (x+y)^(4)-(x-y)^(4) . Hence find the value of (3+sqrt(5))^(4) -(3-sqrt(5))^(4) .

If y = 1/x , then the value of (dy)/(sqrt(1 + y^4)) + (dx)/(sqrt(1 + x^4)) + 3 is equal to

If y = 1/x , then the value of (dy)/(sqrt(1 + y^4)) + (dx)/(sqrt(1 + x^4)) + 3 is equal to

If sqrt(1-x^(4))+sqrt(1-y^(4))=k(x^(2)-y^(2)), prove that (dy)/(dx)=(x sqrt(1-y^(4)))/(y sqrt(1-x^(4)))

If sqrt(1-x^4) + sqrt(1-y^4) =k(x^2 - y^2) then show that dy/dx = {x sqrt(1-y^4)}/{y sqrt(1-x^4)}

Show that: (x^((2)/(3))sqrt(y^(-2)))/(y^(2)sqrt(x^(-2)))times(y^(2)sqrt(x^(-2)))/(sqrt(x^((4)/(3))))=(1)/(y)