Home
Class 12
MATHS
Number of integers in the range of f(x)=...

Number of integers in the range of `f(x)=1/pi(sin^(-1)x+tan^(-1)x)+(x+1)/(x^2+2x+5)` is `0` b. `3` c. `2` d. `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of f(x)= (1)/(pi)sin^(-1)x+tan^(-1)x+(x+1)/(x^(2)+2x+5)

Find the range of f(x)= (1)/(pi)sin^(-1)x+tan^(-1)+(x+1)/(x^(2)+2x+5)

Find the range of f(x)= (1)/(pi)sin^(-1)x+tan^(-1)+(x+1)/(x^(2)+2x+5)

Range of f(x)=cos^(-1)x+2sin^(-1)x+3tan^(-1)x is

Range of f(x)=cos^(- 1)x+2sin^(- 1)x+3tan^(- 1)x is

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Range of the function f(x)=sin^(-1)x+2tan^(-1)x+x^(2)+4x+3 is

range of the function f(x)=cos^(-1)x+2sin^(-1)x+3tan^(-1)x

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then