Home
Class 12
MATHS
If A is a square matrix and e^a is defin...

If A is a square matrix and `e^a` is defined as `e^A=1+A^2/(2!)+A^3/(3!)...........oo=1/2[f(x) ,g(x) and g(x) ,f(x)],` where `A=[(x,x),(x,x)].` and I being the identity matrix then `int (g(x))/(f(x))dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a square matrix and e^(A) =I +A +(A^(2))/(2!)+(A^(3))/(3!)+....oo=(1)/(2){:[(f(x),g(x)),(g(x),f(x)):}]" where "A={:[(x,x),(x,x):}] and 0lt xlt 1, I is an Identity matrix. int (g(x)+1) sin xdx=

If e^(A) is defined as e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),g(x)),(g(x),f(x))] , where A=[(x,x),(x,x)], 0 lt x lt 1 and I is identity matrix, then find the functions f(x) and g(x).

If e^(A) is defined as e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),g(x)),(g(x),f(x))] , where A=[(x,x),(x,x)], 0 lt x lt 1 and I is identity matrix, then find the functions f(x) and g(x).

If inte^(2x)f'(x)dx=g(x) , then int[e^(2x)f(x)+e^(2x)f'(x)]dx=