Home
Class 11
MATHS
log(x)(9x^(2))*log(3)^(2)x=4...

log_(x)(9x^(2))*log_(3)^(2)x=4

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(log_(3)(3x^(2))log_(9)(81x))=log_(9)x^(3)

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

" If ||log_(3)x|-1|^(log_(3)^(2)x+3)=||log_(3)x|-1|^(log_(sqrt(7))x^(4)-4 ) then "

The value of x, satisfying the inequality log_(0.3)(x^(2)+8)>log_(0.3)9x, lies in

For what values of x,log_(0.3)(x^(2)+8)>log_(0.3)(9x)

log_(2)(4^(x)+4)=log_(2)2^(x)+log_(2)(2^(x+1)-3)

The equation x[(log_(3)x)^(2)-(9)/(2)log_(3)x+5]=3sqrt(3) has

Solve : (3)/(2)log_(4)(x+2)^(2)+3=log_(4)(4-x)^(3)+log_(4)(6+x)^(3) .