Home
Class 11
MATHS
lf the fundamental period of function f(...

lf the fundamental period of function `f(x)=sinx + cos(sqrt(4-a^2))x` is `4pi`, then the value of a is/are

A

A. `(sqrt(15))/(2)`

B

B. `-(sqrt(15))/(2)`

C

C. `(sqrt(7))/(2)`

D

D. `-(sqrt(7))/(2)`

Text Solution

Verified by Experts

Period of `sinx " is " 2pi` and period of `cos (sqrt(4-a^(2))x) " is " (2pi)/(sqrt(4-a^(2))).`
`implies LCM (2pi,(2pi)/(sqrt(4-a^(2))))=4pi` (given)
i.e., `sqrt(4-a^(2))=(p)/(2) " where " p=1,3.`
Hence ` a^(2) =(15)/(4),(7)/(4),a=+-(sqrt(15))/(2),+-(sqrt(17))/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the fundamental period of function f(x)=sinx+cos(sqrt(4-a^(2)))x " is " 4pi , then the value of a is/are

Fundamental period of the function f(x) = cos (sinx) + cos(cosx) is :

If the fundamental period of the function cos(cos x)+sin(cos x) is (k pi)/(2) ,then the value of k=

The fundamental period of the function y=sin^(2)((sqrt(2)x+3)/(6 pi)) is lambda pi^(2) then the value of (lambda)/(sqrt(2)) is

The least period of the function f(x)=cos(cos x)+sin(cos x)+sin4x is (k pi)/(2), then the value of k is

Prove that period of function f(x)=sinx, x in R " is " 2pi.

Prove that period of function f(x)=sinx, x in R " is " 2pi.

Prove that period of function f(x)=sinx, x in R " is " 2pi.

Prove that period of function f(x)=sinx, x in R " is " 2pi.