Home
Class 12
MATHS
Let omega be an imaginary root of x^n=1....

Let `omega` be an imaginary root of `x^n=1`.Then `(5-omega)(5-omega^2)....(5-omega^[n-1])` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega be a imaginary root of x^(n)=1 . Then (5- omega)(5- omega^2)"………"(5-omega^(n-1)) is

Let omega be the imaginary root of x^n = 1 then (5-omega)(5-(omega)^2)…...(5-(omega)^(n-1)) is equal to

If omega is an imaginary cube root of unity, then show that (1-omega)(1-omega^2)(1-omega^4) (1-omega^5)=9

If omega be an imaginary cube root of unity, show that, (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

if 1,alpha_1, alpha_2, ……alpha_(3n) be the roots of equation x^(3n+1)-1=0 and omega be an imaginary cube root of unilty then ((omega^2-alpha_1)(omega^2-alpha).(omega^2-alpha(3n)))/((omega-alpha_1)(omega-alpha_2)……(omega-alpha_(3n)))= (A) omega (B) -omega (C) 1 (D) omega^2

If omega be an imaginary cube root of unity, prove that (1-omega+omega^2)(1+omega-omega^2)=4

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega is an imaginary cube root of unity then (1 + omega-omega^2)^5 + (1-omega+omega^2)^5 = ?