Home
Class 12
MATHS
The value of 2sum(r=0)^n(^nCr cos^2rx) i...

The value of `2sum_(r=0)^n(^nC_r cos^2rx)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(n)r(n-r)(nC_(r))^(2) is equal to

The value of (sum_(r=0)^(n)nC_(r)sin2 pi x)/(sum_(r=0)^(n)nC_(r)cos2 pi x) is equal to

If a=min {x^2+4x+5:x in R} and b=lim_(thetato 0) (1-cos 2theta)/(theta^2) , then the value of sum_(r=0)^(n) .^nC_ra^rb^(n-r) , is

The value of sum_(r=0)^(n-1) (""^nC_r)/(""^nC_r+ ""^n C_(r+1)) equals a. n+1 b. n/2 c. n+2 d. none of these

The value of sum_(r=0)^(n-1)(nC_(r))/(nC_(r)+^(n)C_(r+1)) is eqaul to

The value of sum_(r=0)^(3n-1)(-1)^(r)6nC_(2r+1)3^(r) is

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

Evaluate sum_(r=0)^n(r+1)^2*"^nC_r

Evaluate sum_(r = 1)^(n) ""^nC_r 2^r

Find sum_(r=0)^n(r+1)*"^nC_rx^r