Home
Class 12
MATHS
|{:(cosalpha cos beta,cos alpha sin beta...

`|{:(cosalpha cos beta,cos alpha sin beta ,-sin alpha),(-sin beta,cos beta," "0),(sin alpha cosbeta ,sinalpha sin beta ,""cos alpha):}|`

Text Solution

Verified by Experts

The correct Answer is:
`= cos^2 alpha +sin ^2alpha =1`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2A|36 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2B|111 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate {:|( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) |:} =0

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|

sin alpha + sin beta = a "and" cos alpha + cos beta = b sin (alpha + beta) =

sin alpha + sin beta = a "and" cos alpha + cos beta = b cos (alpha + beta) =

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" (sin alpha - cos alpha - sin beta + cos beta)/(sin alpha + cos alpha - sin beta - cos beta)=

If cos theta =(cosalphacosbeta)/(1+sin alpha sin beta) , show that , sin theta=pm(sinalpha+sinbeta)/(1+sinalphasinbeta) .

"Show that :" 2 sin^(2) beta + 4 cos ( alpha + beta) sin alpha sin beta + cos2 (alpha + beta) = cos2 alpha

If sin alpha = sin beta and cos alpha = cos beta then-

Provet that the producet of the matrics [[cos^2 alpha cos alpha sin alpha], [ cos alpha sin alpha sin^2 alpha]] and [[cos^2 beta cos beta sin beta], [ cos beta sin beta sin^2 beta]] is the null matrix when alpha and beta differ by an odd multiple of pi / 2 .

Under rotation of axes through theta , x cosalpha + ysinalpha=P changes to Xcos beta + Y sin beta=P then . (a) cos beta = cos (alpha - theta) (b) cos alpha= cos( beta - theta) (c) sin beta = sin (alpha - theta) (d) sin alpha = sin ( beta - theta)