Home
Class 12
MATHS
if x+y+z=0 , then show that, |{:(1,1,1),...

if x+y+z=0 , then show that, `|{:(1,1,1),(x,y,z),(x^3,y^3,z^3):}|=0`

Text Solution

Verified by Experts

The correct Answer is:
`=0 [because` x+y+z=0 (given )]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2A|36 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2B|111 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=0 then show that abs((1,1,1),(x,y,z),(x^3,y^3,z^3)) = 0.

If a x_1^2+b y_1^2+c z_1^2=a x_2 ^2+b y_2 ^2+c z_2 ^2=a x_3 ^2+b y_3 ^2+c z_3 ^2=d ,a x_2 x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f, then prove that |(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3,y_3,z_3)|=(d-f){((d+2f))/(a b c)}^(1//2)

|{:(x,z,0),(0,y,y),(z,0,x):}|

|{:(" "0," "x,y),(-x," "0,z),(-y,-z,0):}|=0

Using properties of determinants porve that, |{:(x,x^2,1+px^3),(y,y^2,1+py^3),(z,z^2,1+pz^3):}|=(1+pxyz)(x-y)(y-z)(z-x)

For any scalar c prove that, |{:(x,x^2,1+cx^3),(y,y^2,1+cy^3),(z,z^2,1+cz^3):}|=(1+cxyz)(x-y)(y-z)(z-x)

If x + y + z = 0 , then prove that x^(3)+y^(3)+z^(3)= 3xyz

If x/a = y/b = z/c , then show that x^(3)/a^(3) + y^(3)/b^(3) + z^(3)/c^(3) = 3 ((x+y+z)/(a+b+c))^(3) .

If z = x + iy and |2z+1|=|z-2i| ,then show that 3(x^(2)+y^(2))+4(x+y)=3

Without expanding prove that Delta ={:|( x+y,y+z,z+x) ,( z,x,y),( 1,1,1) |:} =0