Home
Class 12
MATHS
For any scalar c prove that, |{:(x,x^2,1...

For any scalar c prove that, `|{:(x,x^2,1+cx^3),(y,y^2,1+cy^3),(z,z^2,1+cz^3):}|=(1+cxyz)(x-y)(y-z)(z-x)`

Text Solution

Verified by Experts

The correct Answer is:
`(1+cxyz)(x-y)(y-z)(z-x)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2A|36 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2B|111 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants porve that, |{:(x,x^2,1+px^3),(y,y^2,1+py^3),(z,z^2,1+pz^3):}|=(1+pxyz)(x-y)(y-z)(z-x)

If |{:(x,x^2,x^3+1),(y,y^2,y^3+1),(z,z^2,z^3+1):}|=a and x ney nez , prove that, xyz=-1.

{:|( x,x^(2) , 1+ px^(3) ),( y,y^(2) , 1+ py^(2)),( z,z^(2) , 1+pz^(2)) |:} =( 1+pxyz ) ( x-y) ( y-z ) (z-x) , where p is any scalar .

Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,b,,c),(x,,y,,z),(yz,,xz,,xy):}|

if x+y+z=0 , then show that, |{:(1,1,1),(x,y,z),(x^3,y^3,z^3):}|=0

((x-y)^(3)+(y-z)^(3)+(z-x)^(3))/((x-y)(y-z)(z-x))=

If x,y,z are all distinct and if abs((x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3)) =0,show that xyz+1=0

If |[x^n, x^(n+2), x^(n+3)], [y^n, y^(n+2), y^(n+3)], [z^n, z^(n+2), z^(n+3)]|=(x-y)(y-z)(z-x)(1/x+1/y+1/z), then n equals a. 1 b. -1 c. 2 d. -2

If x,y,z are different and Delta = {:|( x,x^(2) , 1+x^(3)),( y,y^(3) ,1+y^(3)),( z,z^(3) ,1+z^(3)) |:} then value of delta?

If x+y+z=xyz then prove that (3x-x^3)/(1-3x^2)+(3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2)=(3x-x^3)/(1-3x^2).(3y-y^3)/(1-3y^2).(3z-z^3)/(1-3z^2)