Home
Class 12
MATHS
if a, b, c, are all distinct and |{:(a,a...

if a, b, c, are all distinct and `|{:(a,a^3,a^4-1),(b,b^3,b^4-1),(c,c^3,c^4-1):}|=0` , show that abc(ab+bc+ca)=a+b+c.

Text Solution

Verified by Experts

The correct Answer is:
or, abc (ab+bc+ca)=(a+b+c)
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2A|36 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2B|111 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

If a , b ,c are all different and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-1]|=0, show that a b c(a b+b c+c a)=a+b+c

prove that , |{:(a,a^2,a^3+bc),(b,b^2,b^3+ca),(c,c^2,c^3+ab):}|=(a-b)(b-c)(c-a)(abc+bc+ca+ab)

If D=|(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)| , then D is -

If a^(1/3)+b^(1/3)+c^(1/3)=0 show that (a+b+c)^(3)=27 abc

Prove |{:(1,a^2+bc,a^3),(1,b^2+ca,b^3),(1,c^2+ab,c^3):}|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

|{:(1,1,1),(a,b,c),(bc,ca,ab):}|=(a-b)(b-c)(c-a)

|{:(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3):}|=(b-c)(c-a)(a-b)(bc+ca+ab)

{:|( 3a,-a+b,-a+c),( -b+a, 3b,-b+c) ,( -c+a,-c+b,3c) |:} = 3( a+b+c) ( ab+bc+ca)

|{:(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b)):}|=0

Without expanding prove that , |{:(1,ab,1/a+1/b),(1,bc,1/b+1/c),(1,ca,1/c+1/a):}|=0