Home
Class 12
MATHS
Using determinant find the area of the t...

Using determinant find the area of the triangle whose vertices are (a cos `alpha ,b sin alpha` ), (a cos `beta, b sin beta`) and (a cos `gamma, b sin gamma`).

Text Solution

Verified by Experts

The correct Answer is:
`=2absin (alpha-beta)/(2) sin (beta-gamma)/(2) sin(gamma-alpha)/(2) ` square unit.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2A|36 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2B|111 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" "tan" (alpha + beta)/2=

If alpha, beta and gamma are angle such that tan alpha + tan beta+tan gamma= tan alpha tan beta tan gammaand x=cos alpha + I sin alpha, y=cos beta+ I sin beta and z= cos gamma+ I sin gamma, then the value of xyz is -

If sin alpha = sin beta and cos alpha = cos beta then-

sin alpha + sin beta = a "and" cos alpha + cos beta = b sin (alpha + beta) =

"Evaluate "Delta ={:|( 0 , sin alpha ,-cos alpha ) ,( -sin alpha , 0 , sin beta ),( cos alpha , -sin beta , 0)|:}

If the points O (0,0), A(cos alpha, sin alpha), B(cos beta, sin beta) are the vertices of a right-angled triangle, then |sinfrac((alpha-beta))(2)| =

Provet that the producet of the matrics [[cos^2 alpha cos alpha sin alpha], [ cos alpha sin alpha sin^2 alpha]] and [[cos^2 beta cos beta sin beta], [ cos beta sin beta sin^2 beta]] is the null matrix when alpha and beta differ by an odd multiple of pi / 2 .

If x cos alpha + y sin alpha=x cos beta+y sin beta,"show that",y=x "tan"(alpha+beta)/2

If cos alpha+ cos beta+ cos gamma + cos alpha cos beta cos gamma=0 , show that sin alpha (1+ cos beta cos gamma)=+- sin beta sin gamma .

{:|( sin alpha , cos alpha ,cos (alpha +delta) ),( sinbeta, cos beta,cos (beta+delta )),(sin gamma , cos gamma , cos ( gamma +delta ))|:}=0