Home
Class 12
MATHS
If D=|{:(a1,b1,c1),(a2,b2,c2),(a3,b3,c3)...

If D=`|{:(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3):}|` and `A_1,B_1,C_1` etc. are the respective
cofactors of the elements `a_1,b_1,c_1` etc. then D will be-

A

`a_2C_2+b_2C_2+c_2C_2`

B

`c_1C_1+c_2C_2+c_3C_3`

C

`a_1A_1+b_1B_1+c_1C_1`

D

`a_1B_1+a_2B_2+a_3B_3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2B|111 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2C|37 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion -Reason Type )|2 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

Express the square of |{:(a_1,b_1,0),(a_2,b_2,0),(a_3,b_3,0):}| as a third order determinant ,what is the value of this determinant ?

If the determinant of the matrix [(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))] is denoted by D, then the determinant of the matrix [(a_(1)+3b_(1)-4c_(1),b_(1),4c_(1)),(a_(2)+3b_(2)-4c_(2),b_(2),4c_(2)),(a_(3)+3b_(3)-4c_(3),b_(3),4c_(3))] will be -

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and Delta_1=|(a_1+pb_1,b_1+qc_1,c_1+ra_1),(a_2+pb_2,b_2+qc_2,c _2+ra_2),(a_3+pb_3,b_3+qc_3,c_3+ra_3)| then Delta_1=

If A_1,B_1,C_1, are respectively, the cofactors of the elements a_1, b_1,c_1, of the determinant "Delta"=|[a_1b_1c_1][a_2b_2c_2][a_3b_3c_3]|,"Delta"!=0 , then the value of |[B_2C_2][B_3C_3]| is equal to a. a1^2Δ b. a_1Δ c. a_1^2Δ d. a1 2^2Δ

If f(x) = |(a_1+x, b_1+x, c_1+x), (a_2+x, b_2+x, c_2+x),(a_3+x, b_3+x, c_3+x)| , show that f''(x)=0 and that f(x)=f(0)+S ,where S denotes the sum of all the cofactors of all the element in f(0)dot

If a_1b_1c_1,a_2b_2c_2 and a_3b_3c_3 are three digit even natural numbers and Delta =|[c_1,a_1,b_1],[c_2,a_2,b_2],[c_3,a_3,b_3]| ,t h e n Delta i s divisible by 2 but not necessarily by 4 divisible by 4 but not necessarily by 8 divisible by 8 none of these

If A, A_1,A_2,A_3 are the areas of the inscribed and escribed circles of a DeltaABC, then

If |{:(1+ax,1+bx,1+cx),(1+a_1x,1+b_1x,1+c_1x),(1+a_2x,1+b_2x,1+c_2x):}|=A_0+A_1+A_2x^2+A_3x^3 ,then find the value of A_1 .

Let Delta_1=|{:(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3):}| , Delta_2=|{:(6a_1,2a_2,2a_3),(3b_1,b_2,b_3),(12c_1, 4c_2,4c_3):}| and Delta_3=|{:(3a_1+b_1 , 3a_2+b_2 , 3a_3+b_3),(3b_1,3b_2,3b_3),(3c_1,3c_2,3c_3):}| then Delta_3-Delta_2=kDelta_1 , find k.

If a_1, a_2 are the coefficients of x^n in the expansion of (1+x)^(2n) & (1+x)^(2n-1) respectively then a_1:a_2 will be