Home
Class 12
MATHS
Let A be a square matrix of order 3xx3,...

Let A be a square matrix of order `3xx3`, then |KA| is equal to

A

K|A|

B

`K^2|A|`

C

`K^3|A|`

D

3K|A|

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2C|37 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Multiple Correct Answers Type)|5 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2A|36 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

Let A be a nonsingular square matrix of order 3xx3 .Then |adj A| is equal to

Let A be a non singular square matarix of order 3 xx 3 . Then |adj A| is equal to

If A is a singular matrix of order n then A* (adj A) is equal to -

Let A be a square matrix of order 3 whose all entries are 1 and let I_3 be the identity matrix of order 3. Then the matrix A-3I_3 is

Let A be a square matrix of order 3 so that sum of elements of each row is 1 . Then the sum elements of matrix A^(2) is

choose the correct answer from the given alternative : if A ia a square matrixof oreder 3 x 3, then the value of |KA| will be-

Let A be a square matrix of order 3 such that det. (A)=1/3 , then the value of det. ("adj. "A^(-1)) is

Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2)+7A-8I=O and B=A-2I . Also, det. A=8 , then

If A is a square matrix of order 3xx3 and lambda is a scalar, then adj (lambdaA) is equal to -

A is a square matrix such that A^(3)=I , then A^(-1) is equal to -

CHHAYA PUBLICATION-DETERMINANT -EXERCISE 2B
  1. Evaluate the determinants |{:(x+4,x,x),(x,x+4,x),(x,x,x+4):}|

    Text Solution

    |

  2. Let A=|{:(" "1," "sin theta,1),(-sin theta," "1,sintheta),(-1,-sinth...

    Text Solution

    |

  3. Let A be a square matrix of order 3xx3, then |KA| is equal to

    Text Solution

    |

  4. |{:(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha...

    Text Solution

    |

  5. |{:(x,a,b),(a,x,b),(a,b,x):}|

    Text Solution

    |

  6. |{:(2,3,4),(3,4,5),(4,5,6):}|=0

    Text Solution

    |

  7. |{:(a,b,c),(x,y,z),(p,q,r):}|=|{:(x,y,z),(p,q,r),(a,b,c):}|=|{:(y,b,q)...

    Text Solution

    |

  8. |{:(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega):}|=0 where om...

    Text Solution

    |

  9. |{:(b+c,a,1),(c+a,b,1),(a+b,c,1):}|=0

    Text Solution

    |

  10. |{:(a-b,1,a),(b-c,1,b),(c-a,1,c):}|=|{:(a,1,b),(b,1,c),(c,1,a):}|

    Text Solution

    |

  11. |{:(a+1,a+4,a+2),(a+2,a+5,a+4),(a+3,a+6,a+6):}|=0

    Text Solution

    |

  12. |{:(" "0," "a,b),(-a," "0,c),(-b,-c,0):}|

    Text Solution

    |

  13. |{:(9,9,12),(1,-3,-4),(1,9,12):}|=0

    Text Solution

    |

  14. |{:(a,a^2,bc),(b,b^2,ca),(c,c^2,ab):}|=|{:(1,a^2,a^3),(1,b^2,b^3),(1,c...

    Text Solution

    |

  15. |{:(441,442,443),(445,446,447),(449,450,451):}|=0

    Text Solution

    |

  16. Prove |{:(cos(x-a),cos(x+a),cosx),(sin(x+a),sin(x-a),sinx),(cosa tan x...

    Text Solution

    |

  17. |{:(101,103,105),(104,105,106),(107,108,109):}|=0

    Text Solution

    |

  18. |{:(5^2,5^3,5^4),(5^3,5^4,5^5),(5^4,5^6,5^7):}|=0

    Text Solution

    |

  19. |{:(1,alpha,alpha^2),(1,beta,beta^2),(1,gamma,gamma^2):}|=(alpha-beta)...

    Text Solution

    |

  20. |{:(1,1,1),(a,b,c),(bc,ca,ab):}|=(a-b)(b-c)(c-a)

    Text Solution

    |