Home
Class 12
MATHS
|{:(1,alpha,alpha^3),(1,beta,beta^3),(1,...

`|{:(1,alpha,alpha^3),(1,beta,beta^3),(1,gamma,gamma^3):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2C|37 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Multiple Correct Answers Type)|5 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2A|36 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

|{:(1,alpha,alpha^2),(1,beta,beta^2),(1,gamma,gamma^2):}|=(alpha-beta)(beta-gamma)(gamma-alpha)

Prove that, |{:(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Using properties of determinants in Exercises prove that : {:|( alpha , alpha ^(2) , beta +gamma ),( beta , beta ^(2) , gamma +alpha ),( gamma , gamma ^(2) ,alpha +beta ) |:} =(beta -gamma ) (gamma -alpha ) (alpha -beta ) (alpha +beta +gamma )

prove that, |{:(sin^2alpha,sin alpha cosalpha,cos^2alpha),(sin^2beta,sinbetacosbeta,cos^2beta),(sin^2gamma,singammacosgamma,cos^2gamma):}|=-sin(alpha-beta)sin(beta-gamma)sin(gamma-alpha)

Evaluate: |[alpha, beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,alpha+beta]|

Prove that |{:(betagamma,betagamma'+beta'gamma,beta'gamma'),(gammaalpha,gammaalpha'+gamma'alpha,gamma'alpha'),(alphabeta,alphabeta'+alpha'beta,alpha'beta'):}| =(alphabeta'-alpha'beta)(betagamma'-beta'gamma)(gammaalpha'-gamma'alpha) .

Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|= -64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-delta)(gamma-delta)(gamma-beta)

Prove that |2 alpha+beta+gamma+delta alphabeta+gammadelta alpha+beta+gamma+delta 2(alpha+beta)(gamma+delta) alphabeta(gamma+delta)+gammadelta(alpha+beta) alphabeta+gammadeltaalphabeta(gamma+delta)+gammadelta(alpha+beta)2alphabetagammadelta|=0

If alpha,beta,gamma are the angles of a triangle and system of equations cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0 cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0 sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0 has non-trivial solutions, then triangle is necessarily a. equilateral b. isosceles c. right angled "" d. acute angled

If alpha,beta,gamma are different from 1 and are the roots of a x^3+b x^2+c x+d=0a n d(beta-gamma)(gamma-alpha)(alpha-beta)=(25)/2 , then prove that |alpha/(1-alpha)beta/(1-beta)gamma/(1-gamma)alphabetagammaalpha^2beta^2gamma^2|=(25 d)/(2(a+b+c+d))

CHHAYA PUBLICATION-DETERMINANT -EXERCISE 2B
  1. |{:(1,alpha,alpha^2),(1,beta,beta^2),(1,gamma,gamma^2):}|=(alpha-beta)...

    Text Solution

    |

  2. |{:(1,1,1),(a,b,c),(bc,ca,ab):}|=(a-b)(b-c)(c-a)

    Text Solution

    |

  3. |{:(1,alpha,alpha^3),(1,beta,beta^3),(1,gamma,gamma^3):}|=(alpha-beta)...

    Text Solution

    |

  4. |{:(a+b+2c," "a," "b),(" "c,b+c+2a," "b),(" "c,...

    Text Solution

    |

  5. |{:(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3):}|=(b-c)(c-a)(a-b)(bc+ca+ab)

    Text Solution

    |

  6. |{:(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3):}|=abc(a-b)(b-c)(c-a)

    Text Solution

    |

  7. |{:(a,b,c),(a^2,b^2,c^2),(b+c,c+a,a+b):}|=(a-b)(b-c)(c-a)(a+b+c)

    Text Solution

    |

  8. |{:(1+x,1,1),(1,1+y,1),(1,1,1+z):}|=xy+yz+zx+xyz

    Text Solution

    |

  9. |{:(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4):}|=(5x+4)(x-4)^2

    Text Solution

    |

  10. |{:(1+a,1,1),(1,1+a,1),(1,1,1+a):}|=a^3+3a^2

    Text Solution

    |

  11. |{:(1,b+c,b^2+c^2),(1,c+a,c^2+a^2),(1,a+b,a^2+b^2):}|=(b-c)(c-a)(a-b)

    Text Solution

    |

  12. |{:(a^2,ab,ac),(ab,b^2,bc),(ca,bc,c^2):}|=?

    Text Solution

    |

  13. |{:(-1,b,c),(a,-1,c),(a,b,-1):}|=(a+1)(b+1)(c+1)((a)/(a+1)+(b)/(b+1)+(...

    Text Solution

    |

  14. |{:(x^2+y^2+1,x^2+2y^2+3,x^2+3y^2+4),(y^2+2,2y^2+6,3y^2+8),(y^2+1,2y^2...

    Text Solution

    |

  15. |{:(" "3a," "-a+b,-a+c),(a-b," "3b," "c-b),(a-c," "b-c," "3c):}|...

    Text Solution

    |

  16. |{:(x,a,b),(a,x,b),(a,b,x):}|=(x-a)(x-b)(x+a+b)

    Text Solution

    |

  17. |{:(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c):}|=3abc-a^3-b^3-c^3

    Text Solution

    |

  18. Prove |{:(1,a^2+bc,a^3),(1,b^2+ca,b^3),(1,c^2+ab,c^3):}|=-(a-b)(b-c)(c...

    Text Solution

    |

  19. |{:(a^2,a^2-(b-c)^2,bc),(b^2,b^2-(c-a)^2,ca),(c^2,c^2-(a-b)^2,ab):}|=(...

    Text Solution

    |

  20. |{:((a+1)(a+2),a+2,1),((a+2)(a+3),a+3,1),((a+3)(a+4),a+4,1):}|=-2

    Text Solution

    |