Home
Class 12
MATHS
Using determinant : show that the area...

Using determinant :
show that the area of the triangle with vertices at
`(a^2,a^3),(b^2,b^3)and (c^2,c^3)` is
`1/2(a-b)(b-c)(c-a)(ab+bc+ca) square unit.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Multiple Correct Answers Type)|5 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Integer Answer Type )|5 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2B|111 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

Using integration find the area of the triangle whose vertices are A (1,0) ,B( 2,2) and C (3,1)

The area of the triangle whose vertices are A(1,-1,2),B(2,1-1)C(3,-1,2) is …….

prove that , |{:(a,a^2,a^3+bc),(b,b^2,b^3+ca),(c,c^2,c^3+ab):}|=(a-b)(b-c)(c-a)(abc+bc+ca+ab)

Prove |{:(1,a^2+bc,a^3),(1,b^2+ca,b^3),(1,c^2+ab,c^3):}|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

Show that the quadrilateral with vertices A(3,2), B(0,5), C(-3,2), D(0,-1) is a square.

|{:(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3):}|=(b-c)(c-a)(a-b)(bc+ca+ab)

Find the coordinates of the centriod of the triangle whose vertices are ( a_(1), b_(1), c_(1)) , (a_(2), b_(2), c_(2)) and (a_(3), b_(3), c_(3)) .

Prove that |[1, 1, 1]; [a, b, c]; [ bc+a^2, ac+b^2, ab+c^2]| = 2(a-b)(b-c)(c-a)

By using properties of determinants , show that : (i) {:|( 1,a,a^(2)),( 1,b,b^(2)),( 1,c,c^(2))|:}=(a-b)(b-c) (c-a) (ii) {:|( 1,1,1),( a,b,c) ,(a^(3) , b^(3), c^(3))|:} =( a-b) (b-c)( c-a) (a+b+c)

if a, b, c, are all distinct and |{:(a,a^3,a^4-1),(b,b^3,b^4-1),(c,c^3,c^4-1):}|=0 , show that abc(ab+bc+ca)=a+b+c.