Home
Class 12
MATHS
x+y+z=1, ax+by+cz=k, bcx+cay+abz=k^2...

x+y+z=1, ax+by+cz=k, bcx+cay+abz=`k^2` [a,b,c are unequal ]

Text Solution

Verified by Experts

The correct Answer is:
`x=(k^2+ak-a(b+c))/((a-b)(a-c)),y=(k^2bk-b(c+a))/((b-a)(b-c)) ,z=(k^2+ck-c(a+b))/((c-a)(c-b))`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Multiple Correct Answers Type)|5 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Integer Answer Type )|5 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2B|111 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

solve by cramer's rule : x+y+z=1 , ax+by+cz=k, a^2x+b^2y+c^2z=k^2[a ne b ne c] .

x+y+z=3, a^2x+b^2y+c^2z=a^2+b^2+c^2, a^3x+b^3y+c^3z=a^3+b^3+c^3 [a,b,c are unequal and ab+bc+ca ne =0].

Prove that the equations kx + y + z = 1, x + ky + z = k and x + y + kz = k^(2) will have unique solution when k ne 1 and k ne -2 . Solve the equations in this case.

Consider the system of the equation k x+y+z=1,x+k y+z=k ,a n dx+y+k z=k^2dot Statement 1: System equations has infinite solutions when k=1. Statement 2: If the determinant |1 1 1k k1k^2 1k|=0, t hen k=-1.

If bcx = cay = abz, then x : y : z =

Prove that |[a x-b y-c z, a y+b x, c x+a z], [a y+b x, b y-c z-a x, b z+c y],[c x+a z, b z+c y, c z-a x-b y]|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

find the value of x,y and z so that the vectors vec a= x hat i+ 2 hat j+z hat k and vec b = 2 hat i +y hat j +hat k are equal

If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero solution, then the possible value of k are a. -1,2 b. 1,2 c. 0,1 d. -1,1

If x ,y ,z are different from zero and "Delta"=|[a, b-y ,c-z],[ a-x, b ,c-z],[ a-x, b-y, c]|=0, then the value of the expression a/x+b/y+c/z is a. 0 b. -1 c. 1 d. 2

Statement 1: "Delta"= |[m y+n z, m q+n r, m b+n c],[k z-m x, k r-m p, k c-m a],[-n x-k y,-n p-k q,-n a-k b]| is equal to 0. Statement 2: The value of skew symmetric matrix of order 3 is zero.