Home
Class 12
MATHS
x+y+z=3, a^2x+b^2y+c^2z=a^2+b^2+c^2,...

`x+y+z=3,
a^2x+b^2y+c^2z=a^2+b^2+c^2,
a^3x+b^3y+c^3z=a^3+b^3+c^3`
[a,b,c are unequal and ab+bc+ca `ne`=0].

Text Solution

Verified by Experts

The correct Answer is:
x=y=z=1
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Multiple Correct Answers Type)|5 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Integer Answer Type )|5 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise EXERCISE 2B|111 Videos
  • DEFINITE INTEGRAL AS AN AREA

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos

Similar Questions

Explore conceptually related problems

If a^2+b^2+c^2=x^2+y^2+z^2=1, then show that a x+b y+c z leq1.

Solve the system of the equations: a x+b y+c z=d , a^2x+b^2y+c^2z=d^2 , a^3x+b^3y+c^3z=d^3 .

The minimum value of P=b c x+c a y+a b z , when x y z=a b c , is a. 3abc b. 6abc c. abc d. 4abc

If x^a=y^b=z^c " and "y^3=zx , then prove that b(c+a)=3ca .

If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=c where a,b and c are non-zero real numbers, has more than one solution, then

solve by cramer's rule : x+y+z=1 , ax+by+cz=k, a^2x+b^2y+c^2z=k^2[a ne b ne c] .

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc

If x+y+z=0 prove that |[a x, b y, c z],[ c y, a z ,b x],[ b z ,c x ,a y]|=x y z|[a, b, c],[c ,a ,b],[b ,c ,a]|

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b)^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)

|{:(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3):}|=(b-c)(c-a)(a-b)(bc+ca+ab)