Home
Class 12
MATHS
If x=t^(2) and y=log t, find (dy)/(dx)....

If `x=t^(2)` and `y=log t`, find `(dy)/(dx)`.

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2t^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= t log t,y = (log t)/t , find (dy)/(dx) when t=1

If x=a(cos t+t sin t) and y=a(sin t-t cos t)," find "(dy)/(dx) " at " t=(3pi)/(4)

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=sin t sqrt(cos2t) and y=cos tsqrt(sin2t) , find (dy)/(dx) at t=(pi)/(4) .

If x=log(1+t^(2)),y=t-tan^(-1)t , find (dy)/(dx) .

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x^2 + y^2 = log(xy) , find dy/dx .

If y=e^ log(x^ 5 ) , find dy/ dx ​

If y=log(1+x^2) , then find dy/dx

If y=x+log_5x+2^x,"find" dy/dx