Home
Class 12
MATHS
Find (dy)/(dx), when y=log(x+sqrt(x^(2)...

Find `(dy)/(dx)`, when `y=log(x+sqrt(x^(2)-a^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(sqrt(x^(2)-a^(2)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when y=log|x|

Find (dy)/(dx) , when y= log f(x)

Find (dy)/(dx) , whne y = log(x+sqrt (x^2-a^2))

Find (dy)/(dx) , when y=log_(cosx)x

Find (dy)/(dx) when : y= (x^(3)* sqrt(x^(2)-12))/( 3 sqrt(20-3x))" when " x=4

Find (dy)/(dx) , when y=log("tan"(x)/(2))

Find (dy)/(dx) , when y= x^(x) sin sqrt(x)

"Find "(dy)/(dx)" for "y=log(x-sqrt(a^(2)+x^(2))).

"Find "(dy)/(dx)" for "y=log(x+sqrt(a^(2)+x^(2))).

Find (dy)/(dx) , when y=cos^(3) log(x tan sqrt(x))